Differentiability of convex functions outside small sets

ثبت نشده
چکیده

Small sets. We are going to present some results of the following type: under a suitable assumption on a normed space X, each continuous convex function, defined on an open convex set A ⊂ X, is (Gâteaux or Fréchet) differentiable outside a set which is in some sense small. It is natural to ask that a nonempty family S ⊂ 2X whose elements are considered “small sets” satisfy the following conditions: (a) A ∈ S, B ⊂ A ⇒ B ∈ S; (b) An ∈ S for each n ∈ N ⇒ ⋃ n∈NAn ∈ S; (c) A ∈ S ⇒ A + v ∈ S for each v ∈ X (that is, S is translation invariant); (d) S contains no nonempty open set. Notice that (a) and the assumption that S is nonempty imply that ∅ ∈ S. Each family satisfying (a) and (b) is called a σ-ideal. Thus a family of small sets has to be a nonempty translation invariant σ-ideal that cointains no open ball (of positive radius).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic G&eaux- Differentiability of Convex Functions on Small Sets

The theory of generic differentiability of convex functions on Banach spaces is by now a well-explored part of infinite-dimensional geometry. All the attempts to solve this kind of problem have in common, as a working hypothesis, one special feature of the finite-dimensional case. Namely, convex functions are always considered to be defined on convex sets with nonempty interior. But typically, ...

متن کامل

A remark on localized weak precompactness in Banach spaces

We give a characterization of K-weakly precompact sets in terms of uniform Gateaux differentiability of certain continuous convex functions.

متن کامل

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010